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Research over the last year on grant no R & D 7504-CH-01 from the
European Research Office of the U.S. Army has consisted both in the
investigation of the photocatalytic activity of mammalian ferritin and.in the
studies of nanocrystalline oxide films, specifically WO, and TiO,.

The first phase of the project concerns photocatalytic studies on small iron
oxide clusters in view of the use of such iron oxide based catalysts in the
demineralization of non-stockpile agents. We have initiated work on ferritin
which is a very interesting natural protein, carrying in its cavity iron oxide
particles with a size of approximately 5 nm. We have discovered that these
quantum sized iron oxide particles have a very high activity in promoting the
oxidation of a whole series of organics by oxygen, a reaction which is strongly
catalysed by the band gap excitation of the semiconductor colloid.

Ferritin, an ubiquitous biological iron-storage protein molecule, consists of
24 symmetrically related protein subunits forming a near-spherical hollow
shell, “apoferritin“. The central cavity of the apoferritin shell is occupied by an
iron core of “ferrinydrite” or 5Fe, O 3 9 H,0 varying in “crystallite” structure
(amorphous or crystalline) depending on the source of the ferritin which is
widely distributed in nature ( e.g., mammalian spleen, liver, heart or bacterial,
plant or fungal ferritin) Through our experimentation it has been shown not
only that the iron (III) core can be photochemically reduced (Fe (II)) in
presence of electron donors, but likewise that organic substrates such as
oxalate and tartrate can be photo-oxidized, the ferrihydrite core acting as a
catalyst, with the concomitant reduction of O,. Laser photolysis studies
confirmed the reduction of cytochrome C and viologens photosensitized by
ferritin via band-gap excitation. (see schemes 1, 2, 3 of Fig. 1).

A schematic representation of the horse spleen ferritin molecule is shown
in Fig. 2 a). The source of ferritin used in our experiments was generally Sigma
type 1 from horse spleen, in sterile filtered solution in 0.1 M NaCl with a Cd
content of less than 1%, although some experimentation using a Fluka source
(Biochemika, 50 mg/ml aqueous solution with less than 0.05% Cd, exhibiting
less activity) was performed. This lower activity was attributed to a difference
in iron core structure or crystallinity. Generally, the ferritin was used as
received with no prior treatment in the presence of various chelating agents,
such as EDTA. Illumination was carried out employing either a Xenon lamp or
in a Hanau suntest apparatus with appropriate filters. Laser photolysis was
performed using a doubled frequency ruby laser.

The photoreduction of ferritin (0.25 mg/ml) in presence of 2 mM oxalate,
PH 5.5 (50 mM MES buffer) under an argon atmosphere with wavelengths
greater than 300 nm is presented in Fig. 3 where after 30 min. illumination
practically all of the ferrihydrite is reduced to Fe(II). Re-addition of air results
in immediate re-oxidation of Fe(II) to Fe(III). Fig. 4 illustrates the effect of
oxalate on this photoreduction. In the absence of oxalate only a very slight
reduction of ferritin is witnessed due to electron donation by the protein shell
molecules. The effect of pH on this photoreduction reaction, that is, the more




acid the solution, the more rapid the reaction, is demonstrated in Fig. 5.
Kinetics of the photoreduction of ferritin in presence of various electron donors
such as tartrate, cysteine and ascorbate, as well as the blank (donor electrons
from protein shell) are shown in Fig. 6. |

The photo-oxidation and resultant full destruction of the organic
compounds oxalate and tartrate with concomitant CO, evolution and O,
consumption in presence of mammalian ferritin at an initial pH of 3 under
suntest lamp conditions was observed. The pH in the unbuffered experiments
on oxalic acid varies between 3 and 7 during the course of this reaction.

C,04H,+ 050, — ™ 2C0, + H,0 (1

The photo-oxidative degradation of tartaric acid in presence of ferritin
proceeds by the following overall stoichiometry

with the pH varying from the initial value of 3 to pH = 5.8. One could easily
imagine the extension of this type of photo-oxidative degradation to various
organic CW simulants, such as the organic phosphate containing pesticides.

The direct photo-electron charge transfer from photosensitized ferritin to the
molecules cytochrome C and various viologens was demonstrated in laser flash
photolysis experiments. These molecules are too large to enter the prot'ein core
of the ferritin molecule through one of the channels found in the shell
structure and, thus, electron transfer must occur via tunneling to the exterior -
of the protein molecule. Fig. 2 b) and ¢) are schematic representations of these
photoreductions. Fig. 7 illustrates the absorbance changes as a function of time
both under dark and illuminated conditions. Figs. 8 and 9 depict the”
photoreduction of cytochrome C by ferritin with and without the presence of
additional electron donors, or air, and as a function of light intensity. The
reaction is greatly enhanced in the presence of tartrate. The more acid pH
ranges are optimal for cytochrome C photoreduction as for photoreduction of
ferritin itself in presence of oxalate;however, the reaction extent for
photoreduction of cytochrome C in presence of tartrate remains unchanged
over the pH range 5.5 to 8.5. The photoreduction of dimer viologen (DV) by
ferritin in presence of tartrate is shown as well in Fig. 10. A flash photolysis
experiment demonstrating the direct electron transfer from ferritin to PVS
(propyl viologen sulfonate) in presence of tartrate as well as its blank are
depicted in Fig. 11. -

We have also engaged studies on nanocrystalline oxide films, as mentioned
previously. The goal here is to obtain films that exhibit high photocatalytic
activity under visible light. To this end, nanocrystalline W03 films in the
micron thickness range and with a roughness factor exceeding 1000 have been
produced via a colloidal precursor solution. These films have been subjected to




photoelectrochemical studies using methanol as model substrate for oxidation.
Valence band hole transfer to this scavenger leading to complete
mineralization was witnessed. For comparison, photoelectrochemical phenol
oxidation on sensitizer-derivatized thin film TiO, optically transparent
electrodes was also investigated.

The colloidal WO 3 Precursor solution was prepared by first dissolving 3.6
gm of H, WO 3 (tungstic acid) in 50 ml of water to which were added 4 mi of
concentrated NH 3 This solution was then diluted to 800 ml and boiled for 6
hours. The final solution, a transparent colloidal solution of white tungstic
acid, attains pH=3.7.

The WO 3 particulate films are prepared by adding 0.1 ml of 4% PVA
(polyvinyl alcohol) to 0.1 ml of the 2 M WO 3 Precursor colloidal solution and
diluted to 0.24 ml by adding 0.04 ml H,0. We then applied 0.1 ml of this
mixture to a conducting glass {Nippon Sheet Glass, 10 ohm/03, fluorine-doped
Sn0, glass (TCO)} surface of 3.7 cm? (E 12 electrode) The film was initially
dried in a stream of hot air for 5 to 10 minutes at approximately 90 °C and
then sintered at 500 °C under a stream of O, for 1 hour. The scanning electron
microscope images depicted in Fig. 12 illustrate the particulate nature of the
porous film (7u) electrode, specifically E 12, for which the preparation is
described above. The white light photocurrent/voltage plots of aqueous and
1.5 M methanol solutions, respectively, employing the E 12, WO 3 working
electrode are illustrated in Figs. 13 and 14, the respective bias necessary to
obtain charge separation for the efficient oxidation of H,0 and methanol being
demonstrated.

Fig. 15 shows the WO 3 particulate film action spectrum at pH = 3 in the
photoelectrochemical oxidation of methanol (1.5 M) in aqueous solution
(supporting electrolyte 0.1 M NaClO,t). The WE potential is adjusted to 500 mV
vs SSCE. The incident monochromatic photon to current conversion yield (IPCE)
is plotted as a function of excitation wavelength. The IPCE values were derived
from the photocurrents (mA /cmz) by means of the equation

IPCE = 1240 iph/l(nm) P

where P is the incident monochromatic light intensity expressed in W/mz. The
ICPE values increase towards the blue steeply starting from a threshold
wavelength at 480 nm. The conversion yield at 400 nm (E12 electrode)attains
a value close to 75% in the absence of methanol (Fig. 16) and 115% in the
presence of methanol (Fig. 15) indicating that quanutative conversion of
incident photons into electric current is taking place. The fact that the yield
exceeds 1008 is due to the current doubling effect observed with methanol:
Hole capture by the latter reagent produces 2 radical which injects an electron
in the conduction band of WO 3 From this finding one infers that light induced
charge separation is greatly favored in the nanocrystalline oxide films. The
decline in efficiency at wavelengths shorter than 400 nm is an artifact due to
the glass absorption as can be seen from the inset showing the absorption




spectrum of the film coated WO 3 electrode. Under polychromatic exposure the
experimental photocurrent in presence of methanol was measured as 3.1
mA/cmz, in good agreement with the value calculated of 3.8 mA/cm2 from the
overlap of the photocurrent action spectrum in Fig. 15 with the standard solar
AM 1.5 emission spectrum (see Table 1). In the action spectrum of the WO 3
electrode we would like to stress the long visible wavelength tail which is not
apparent in the action spectrum of the photoelectrochemical oxidation by
nanocrystalline TiO,. Fig. 17 illustrates the photocurrent action spectrum of
phenol oxidation using a sensitized TiO, particulate film as the WE for
comparison with the WO 3 action spectrum of methanol oxidation. In this case
the electrode is a particulate film of TiO, derivatized by the ruthenium
complex {Ru(4,4'-2,.2-bipy)(4'-POH- -terpy)(NCS)}, where (4’-P03H-terpy) is
the novel ligand 2,2°:6,2"-terpyridine-4’'-phosphonic acid. The supporting
electrolyte in this experiment is 0.01 M NaClO,. The second curve depicted is
the previous Rulj (ruthenium (2,2°)-bipyridyl-(4,4’)-dicarboxylic acid)
derivatized TiO, film shown for comparison. The phosphonate group of this
ligand stongly enhances adsorption onto the TiO, surface and provides
sufficient electronic coupling with the oxide to achieve efficient light-induced
charge separation. These experiments were carried out in an electrochemical
cell equipped with a quartz window, irradiated from the glass side. The source
of irradiation was a Xe lamp, 100 W/m2 simulated sunlight with 2 470 nm
cut-off filter. Under these conditions any photocurrent is solely attributed to
sensitisation. The photocurrent action spectrum indicates a2 maximum incident
photon flux to electron flow conversion efficiency of 18%, compared to 13% for
the Rul 3 sensitized film, at 480 nm. The photocurrent calculated for the
overlap integral of the act1on spectra with the AM 1.5 solar emxssmn
corresponds to 1.51 mA /cm for the phosphonated complex and 0.77 mA/cm
for the carboxylated complex, respectively. Thus the new sensitizer based on a
phosphonated bipyridyl ligand exhibits a greatly improved visible light
response apart from being more strongly adsorbed to TiO, films as compared
to the previously employed RuL 3 dvye.

Studies on the reproducibility and efficiency of these nanocrystalline WO3
thin film electrodes have advanced greatly. Visible light photoelectrochemical
degradation of the simulant compound, 4-nitrdphenyldiethylphosphate,
Paraoxon, is proving to be quite promising, and will be addressed in 2
forthcoming report.
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FIGURE 3-

Photoreduction of Ferritin
in the Presence of Oxalate
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- FIGURE 4-

Photoreduction of Ferritin
in the Presence of Oxalate. Kinetics.
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FIGURE 5 .

Photoreduction of Ferritin in the
Presence of Oxalate as a Function of pH
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FIGURE 6

Photoreduction of Ferritin
Kinetics |
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FIGURE 7

Photoreduction of Cytochrome by Ferritin
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FIGURE 8

Photoreduction of DV by Ferritin
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FIGURE 9

Photoreduction of Cytochrome by Ferritin
as a Function of Light Intensity
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FIGURE 10

Photoreduction of Cytochrome

by Ferritin
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FIGURE 11

LASER PHOTOLYSIS OF FERRITIN/PROPYLVIOLOGEN
SULFONATE AQUEOUS SOLUTIONS
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1) Ferritin (horse spleen) 0.11 mg/ml = 2. 10 =/ M, Fe(Ill) in Ferritin = 1.64 - 104 M,
PVS =103 M, tartrate = 1071 M, CAPS buffer pH =10, Ar bubbled, Ao, =347 nm, A= 602 nm.

2) blank, all conditions identical except no ferritin added




FIGURE 12 .

SCANNING ELECTRON MICROSCOPE
NANOCRYSTALLINE FILM EDGES IN W03, PR
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